People

Jeremy Huang - G5

Jeremy Huang - G5

University of California at San Diego, Electrical and Computer Engineering, MS
University of California at Berkeley, Electrical Engineering & Computer Science, BS
As a PhD student at Harvard Medical School who is co-advised by Professor Lewis, my work focuses on gene-regulation and cell-lineage decision making in the early mammalian embryo. In collaboration with the Lewis group, I am interested in how maternal in vivo conditions can be recapitulated in vitro.
NWL B148.30
headshot

Arda Kotikian - G5

Mount Holyoke College, Chemistry & Math, BA
NSF Graduate Research Fellow

I am working on programming 3D shape change in actuators by controlling molecular orientation at the filamentary scale while programming structure at the macroscopic scale via direct ink writing. I am especially interested in developing 3D liquid crystal elastomer actuators for use in soft robotics.

NWL B148.30
Katharina T.  Kroll - G3

Katharina T. Kroll - G3

University of Freiburg, Molecular Medicine, MSc
As part of the bioprinting team, I am investigating printing of hierarchical blood vessel systems with complex cellular interactions. Scaling up the bioprinting approach to incorporate biologically relevant geometries and cellular variety could be the next step towards building functional tissues mimicking complexity and organization of tissue physiology.
NWL B148.30
Headshot

Aric Lu -G2

University of Delaware, Electrical Engineering, HBEE

I work with the bioprinting team to develop materials and methods to model human systems in vitro.

NWL B148.30
JM_Headshot

Jochen Mueller

ETH Zurich, PhD
My research aims to create materials and structures with novel and outstanding (mechanical) properties. To achieve these properties, I develop new fabrication techniques based on the direct-ink writing process and combine them with computational methods to fully exploit the design space.
NWL B148.30
jpg

Jalilah  Muhammad - G1

Southern University and A&M College, Chemistry, BS

I am interested in programming embedded 3D printed structures with liquid crystal elastomers as artificial muscles to advance the technology of soft robotics and assistive devices.

pic

Radhika K. Poduval

University College London, PhD
During her PhD, Radhika worked on developing fiber-optic probes for minimally invasive surgical applications. This included development of microscale optical-ultrasound generating devices and interferometric pressure sensors for cardiovascular microsurgery, using micro/nano-fabrication techniques to form and integrate polymeric 3D structures to the endface of glass optical fibers. At the Lewis Lab, Radhika is working on ultrasound-based acoustophoretic printing mechanisms and associated applications.
NWL B148.30
headshot

Daniel S. Reynolds

Boston University, PhD

During his Ph.D., Daniel developed 3D in vitro tumor models to study how the tumor microenvironment’s physical properties contribute to cancer progression. At the Lewis Research Group, Daniel’s research focuses on using 3D bioprinting to manufacture vascularized biological tissues for applications in both regenerative medicine and disease modeling.

NWL B146.40
Headshot

Sanlin Robinson

Cornell University, Materials Science & Engineering, PhD

I am interested in manufacturing large-scale, vascularized tissue constructs to enable the translation of our foundational technologies.

CLSB 206-14A
Benito Román-Manso

Benito Román-Manso

Institute of Ceramics and Glass (CSIC) & Autonomous University in Madrid, PhD
Benito received his PhD degree in 2015 after carrying out studies in SiC ceramics and graphene-ceramic composites in the Institute of Ceramics and Glass (ICV-CSIC) in Madrid. The aim was the enhancement of the physical properties of these ceramic-based materials, fabricated both as bulk and as 3D-printed scaffold structures. In the Lewis group, Benito’s research is centered on the development of novel, 3D-printed ceramics with different functionalities.
NWL B161
Mark Skylar-Scott

Mark Skylar-Scott

Massachusetts Institute of Technology, PhD
During his PhD, Mark developed a method for rapid 2-D and 3-D laser printing of biomaterials using two photon microscopy. He applied his printer to develop detailed vascular structures, and to direct neural development. At the Lewis Research Group, Mark is developing large-scale vascular networks for tissue and organ printing using direct-ink writing methodologies. He is also interested in combining different 3-D printing methodologies to achieve novel capabilities in the field of additive manufacturing of biological materials.
NWL B146.40
jpg

Rodrigo Telles- G2

University of California, Berkeley, Chemical Engineering, BS
I am interested in the fabrication and design of soft active materials with locally tailorable mechanical properties for soft robotics applications.
NWL B148.30
Sébastien G. M. Uzel

Sébastien G. M. Uzel

Massachusetts Institute of Technology, PhD
Sebastien received his PhD from the department of Mechanical Engineering at MIT under the supervision of Pr. Roger Kamm. There, he developed microfluidic devices to expose cells to complex and dynamic concentration profiles within a 3D extracellular matrix. In addition, by combining optogenetic technology and microfluidics, Sebastien designed a platform that allowed compartmentalized 3D coculture of lightexcitable motor neurons and muscle cells. In the Lewis Lab, Sebastien's research focuses on utilizing 3D bioprinting to engineer vascularized and functional biological tissues. He is also interested in the development of tools and strategies to enhance the scale and versatility of 3D printing.
NWL B146.40
Robert Weeks

Robert Weeks- G2

University of Waterloo, Mechanical Engineering, BASc
Research Fellow
The setup and fine tuning of all the different parameters in additive manufacturing often takes much longer than the actual print itself. I am interested in the development of novel additive manufacturing systems with process feedback to decrease setup time, increase printing throughput and optimize print quality.
NWL B148.30