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We tackled the challenge of designing soft granular matrices with predictable

structures, properties, and performance for use in biomedical applications.

Experimentally, we report the assembly of hydrogel bioblocks and their

consolidation into granular matrices with emergent non-linear rheological

behavior and functional extrudability. At each stage, our modular ML approach is

leveraged to derive data-driven predictive models and design rules. Our

generalizable approach should be applicable for data-driven advancement of any

complex material system.
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optimization of granular hydrogel matrices
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and Jennifer A. Lewis3,4
PROGRESS AND POTENTIAL

Granular hydrogel matrices are

promising for biomedical

applications ranging from

extrusion-based bioprinting to

injectable tissue engineering.

However, they remain challenging

to design, assemble, and

optimize. Each development

stage involves multidimensional

input-output spaces affected by

poorly understood multi-scale,

multi-physics phenomena. Here,

we demonstrate the utility of a

flexible and modular machine

learning (ML) approach to
SUMMARY

Granular hydrogel matrices have emerged as promising candidates
for cell encapsulation, bioprinting, and tissue engineering. How-
ever, it remains challenging to design and optimize these materials
given their broad compositional and processing parameter space.
Here, we combine experimentation and computation to create
granular matrices composed of alginate-based bioblocks with
controlled structure, rheological properties, and injectability pro-
files. A custommachine learning pipeline is applied after each phase
of experimentation to automatically map the multidimensional
input-output patterns into condensed data-driven models. These
models are used to assess generalizable predictability and define
high-level design rules to guide subsequent phases of development
and characterization. Our integrated, modular approach opens new
avenues to understanding and controlling the behavior of complex
soft materials.
advance complex materials in a

stepwise fashion. We apply our

ML approach to automatically

construct, validate, and explain

predictive design frameworks for

each set of empirical results.

These data-driven models allow

one to assess each experimental

design space and provide

condensed design insights

extracted from high-dimensional

input-output maps. The resulting

bioblock materials have broad

biomedical applications, yet our

approach should be applicable for

data-driven advancement of any

complex material system.
INTRODUCTION

Granular hydrogel matrices are an emerging class of soft matter that offer several ad-

vantages over traditional biomaterials. Composed of discrete, yet densely packed

building blocks, these materials are promising for a wide range of biomedical appli-

cations.1,2 For example, granular matrices composed of hydrogel bioblocks can

encapsulate drugs, biologics, and cells,3–5 serve as an ink or support matrix for

in vitro bioprinting,6–9 or be injected into cavities, open wounds, or damaged car-

diac tissue for in vivo tissue engineering.10–13 Despite such promise, they remain

challenging to design, assemble, and optimize. Individual hydrogel bioblocks

must first be generated (e.g., via microfluidics, fragmentation, bulk emulsion) and

then consolidated into densely packed granular matrices that exhibit the reversible

yielding and shear-thinning behavior required for bioprinting and injectabil-

ity.1–3,14–18 Open challenges in this workflow include the scalable and tunable forma-

tion of user-defined hydrogel bioblocks, the dynamic evolution of bioblocks and

their compaction into densely packed granular matrices, the emergent non-linear

rheology of soft granular matrices, and the controlled flow of soft granular matrices

in confined geometries.19–25

In data-driven modeling (Figure 1A), supervised machine learning (ML) is applied to

material databases to automatically build predictive frameworks directly from the

data itself.26–29 Unlike humans, computers can learn arbitrarily complex patterns

from heterogeneous and high-dimensional data without pre-defined theoretical

frameworks and without a bias toward positive or recent trials. To date, researchers

have successfully harnessed this approach at the atomic and molecular levels, often
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Figure 1. An integrated data-driven experimental pipeline for soft granular matrices

(A and B) The data-driven paradigm leverages machine learning to build predictive frameworks directly from data itself (A). The experimental paradigm

relies on empirical exploration to optimize structures, properties, and performance of complex materials (B).

(C–F) Our modular approach integrates data-driven modeling with experimentation to map the input-output relationships at each stage of soft granular

matrix development.

1Harvard–MIT Program in Health Sciences and
Technology, Cambridge, MA 02139, USA

2Institute for Medical Engineering and Science,
Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

3Wyss Institute for Biologically Inspired
Engineering, Harvard University, Cambridge, MA
02138, USA

4John A. Paulson School of Engineering and
Applied Sciences, Harvard University,
Cambridge, MA 02138, USA

5Department of Mechanical Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

6Lead contact

*Correspondence: connorv@mit.edu

https://doi.org/10.1016/j.matt.2023.01.011

ll
OPEN ACCESS

Please cite this article in press as: Verheyen et al., Integrated data-driven modeling and experimental optimization of granular hydrogel matrices,
Matter (2023), https://doi.org/10.1016/j.matt.2023.01.011

Article
relying on large simulation-derived databases.28–30 By contrast, less attention has

been given to using ML for experimental granular-scale soft matter.30–32 Further,

ML tools are often used to map a single input-output space, whereas full material

lifecycles involve many potential input-output spaces at many different stages of

development.33

In experimental optimization (Figure 1B), researchers explore potential design

spaces to uncover reliable processing routes and structure, property, and perfor-

mance insights.34,35 Links between parameters and outcomes are informally en-

coded as ‘‘expertise’’ or formally encoded in design plots andmathematical models.

Many materials were advanced this way, but there are limitations. First, humans are

not adept at handling high-dimensional data, so processes with multiple inputs pose

challenges for evaluation.31,33 Second, humans are subject to positive-results bias,

recency bias, or confirmation bias that can inadvertently distort analysis.26,36 The

omission of negative results, reporting of subsets, or failure to include confounders

can skew conclusions. Finally, complex materials like granular bioblock matrices

exhibit multi-scale, multi-physics phenomena that are difficult to describe or model,

hindering the translation of experimental results into predictive design frame-

works.31,33,37 Indeed, manual derivation of governing equations at each step of

development would be intractable.38

We posit that data-driven modeling could be coupled with experimental optimiza-

tion to assess the predictability of soft granular material design spaces and delineate

high-level input-output relationships. Hence, we propose to combine a flexible ML

workflow with structured empirical results to derive predictive design frameworks at

each stage of material development. Specifically, we integrate data-driven

modeling with experiments to create extrudable and injectable granular matrices

composed of alginate-based bioblocks (Figures 1C–1F). Computationally, we

focused on automated tuning and selection of algorithms, rigorous evaluation via

multi-metric grouped and nested cross-validation, and simplified predictive maps

for human-readable insight into n-dimensional design spaces. Experimentally, we
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mailto:connorv@mit.edu
https://doi.org/10.1016/j.matt.2023.01.011


Figure 2. Flexible data-driven modeling pipeline for complex materials

(A) Base algorithms (random forest, gradient boosting) were tuned and selected in an automated

grid search.

(B) The modeling workflow was evaluated via nested and grouped cross-validation with multi-

metric evaluation.

(C) Optimal configurations were identified in a final cross-validation. Optimized algorithms were

trained on all data and individual predictions were combined.

(D) Simplified synthetic datasets were constructed and fed into trained models to make new

predictions. Human-readable 1D and 2D predictive maps were extracted from the n-dimensional

design space to intuitively visualize the learned patterns.
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focused on the scalable generation of alginate-based bioblocks (Figure 1C), which

are subsequently compacted into dense granular matrices (Figure 1D) with tunable

rheological properties (Figure 1E) that facilitate controlled delivery during extrusion

or injection (Figure 1F). At each step, we leverage our modular ML approach to (1)

assess whether the empirical data structure is learnable and generalizable, and (2)

identify the underlying relationships among design, structure, property, and perfor-

mance outcomes. We find that these ML models facilitate transparent data-driven

progression through thematerial processing pipeline, from initial bioblock assembly

to final functional characterization. We expect this integrated approach will be appli-

cable for a broad range of soft and living materials.

RESULTS

Data-driven modeling pipeline for complex materials

We converted unstructured experimental results from physical and digital records

into structured machine-readable datasets with input design matrices and corre-

sponding output vectors.39 We based our computational workflow on tree-based

ensemble algorithms, namely random forest (RF) and gradient boosting (GB) (Fig-

ure 2A). These non-parametric algorithms are chosen because they can flexibly

handle classification or regression tasks, non-linear relationships, high-dimensional

data, and mixed datatypes.40 RF constructs a simple-averaged ensemble in parallel,
Matter 6, 1–22, March 1, 2023 3
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using random bootstrapped data with random feature subsets.41 GB constructs a

weighted-average ensemble in series, using weighted bootstrapped data with all

features.42 In general, ensembles provide better predictive capacity and stability

than single models.43–45 Given the variability between datasets, base algorithms

are tuned for optimal performance on each problem.46,47 We applied an automated

grid search to appraise hyperparameter configurations and select models with suf-

ficient flexibility to fit signal without overfitting to noise48 (Figure 2A). Because our

datasets are empirically derived, we must consider issues like repeated measures,

batch effects, and uneven sampling.49–51 To rigorously evaluate the model-building

process, we applied a nested and grouped cross-validation (CV) procedure49,52,53

(Figure 2B). The full dataset is subjected to an ‘‘outer’’ k-fold CV and each outer

training fold is subjected to an ‘‘inner’’ k-fold CV. Configured algorithms are trained,

scored, and selected via the inner protocol, then top performers are re-fit and scored

on unseen outer test data. Because no scoring metric is perfect, we used three

different metrics for each problem to obtain more comprehensive estimates of

model performance (accuracy, area under the receiver operating characteristic curve

[ROC-AUC], F1 for classification; r2, mean absolute error [MAE], median absolute er-

ror [AE] for regression).54–56 To avoid data leakage, we assigned unique IDs for each

experiment and used a grouping procedure to ensure the same experiment could

not appear in both train and test simultaneously.57 With a single holdout set, perfor-

mance estimates may display high variance or optimistic bias (if experimental errors

are minimized over time or if the samples are in a densely sampled region of the

training distribution).58,59 However, our approach synthetically used all available ex-

periments as holdouts to create a composite score independent of (1) when the trials

are conducted, and (2) what the specific trial conditions are. Accordingly, if some tri-

als display significant noise or batch effects, or if a sparsely sampled region is unpre-

dictable, the composite score would be properly penalized (unlike a single holdout

that may not capture such variability or failure).58,60 Thus, we report scores that

should reflect the generalizability and reproducibility of our data-driven models

for each particular experimental phase.

Next, we applied a standard k-fold CV to automatically configure and select top-per-

forming algorithms using the validated modeling process (Figure 2C). These final

configurations are trained on all available data and averaged into a final ensemble

to further improve stability.43–45 At this stage, our data-driven models can be de-

ployed directly for predictive analytics (i.e., predicting material outcomes for candi-

date design inputs) or combinatorial optimization (i.e., searching for optimal design

inputs for target material outcomes). However, black-box models and high-dimen-

sional patterns are incomprehensible to human users.61–63 As experimentalists, we

desired a human-in-the-loop approach to develop data-driven intuition about the

input-output associations in our problem domain, identify promising avenues for

further exploration, and explain the models via condensed design summaries.61,63

Accordingly, we extracted human-readable predictive maps of the design space.

First, simplified 2xn synthetic datasets are created by selecting low and high values

for each input (within the training distributions) and then generating a matrix con-

taining pairwise combinations (to obtain coverage of the design space) (Figure 2D).

These simplified datasets are fed into our trainedmodels to generate predictions for

each set of inputs. Visual maps are then created by plotting predicted outputs

against the bilevel inputs. These maps represent 1D or 2D slices of the n-dimen-

sional patterns learned by the data-driven model (with contributions from other

variables averaged out by the combinatorial strategy). Such visualizations provide

human users with easily understood, high-level takeaways about the direction and

magnitude of data-driven input-output relationships62,64 (Figure 2D).
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Finally, we apply this customized ML workflow to granular matrix development,

covering the entire continuum from initial bioblock assembly to final performance.

Below we provide overview schematics, representative results, aggregated evalua-

tions, and high-level design takeaways for each integrated experiment and model.

These condensed highlights are paired with in-depth supplemental information

covering both experimental and computational results (e.g., empirical dataset

breakdowns, full model evaluations, feature importance values, all univariate and

bivariate design maps).

Controlled assembly of hydrogel bioblocks

We assembled hydrogel bioblocks composed of ionically crosslinked alginate via a

droplet-based method.3,21,65,66 Alginate precursor solutions are extruded from a sy-

ringe into a perpendicular airstream, where droplets form, detach, and are ultimately

gelled within an aqueous reservoir that contains calcium ions (Ca2+) (Figure 3A). In

our first set of experiments, we tested combinations of intrinsic (e.g., alginate and

ion concentration) and extrinsic (e.g., extrusion rate and air pressure) parameters

and recorded formation success in a binary manner (Figures 3A, 3B, and S1–S6).

We trained a classifier (Tables S1 and S2) to predict bioblock formation as a function

of six different assembly inputs and observed high accuracy (0.912), ROC-AUC

(0.902), and F1 scores (0.898), suggesting the underlying patterns could be effec-

tively learned. (Figure 3C). Univariate maps revealed the importance of intrinsic pa-

rameters, with large increases in the predicted probability of formation if alginate

concentration or precursor solution viscosity are increased (Figures 3D and S5).

Extrinsic assembly parameters had a smaller effect, with the exception of air pres-

sure, which displayed a sizable inverse relationship. The bivariate map showed

that low-viscosity precursor and high pressure would likely end in failure (P(forma-

tion) = 0.23), while the opposite conditions would typically lead to stable bioblock

formation (P(formation) = 0.94) (Figures 3E and S6).

We categorized these alginate bioblocks by their shape (tail, oblong, or sphere) and

built a multi-class classifier (Tables S1 and S2) to model assembly shape relationships

(Figures 3A, 3F, and S7–S12). The scores are good (Acc = 0.797, ROC-AUC = 0.829,

F1 = 0.742), but we noted a decrease in predictive capacity compared with the for-

mation classifier (Figures 3C and 3G). This decline is attributed to the non-determin-

istic nature of the shape data, where identical assembly conditions yielded differ-

ently shaped bioblocks (this stochastic phenomenon is also present in the

formation data but is much less prevalent) (Figures S2 and S8). Precursor solution vis-

cosity again emerged as a dominant parameter, whereas alginate concentration and

air pressure have a smaller effect on shape than on formation (Figure 3H). Instead,

other inputs, such as the surface tension of the gelling reservoir, are key determi-

nants of bioblock shape (Figure S11). Hence, the relative impact of a given design

parameter depends on the specific input-output relationship being studied. In the

2D design maps, we observed that increased precursor viscosity and decreased sur-

face tension favored spherical bioblocks (P(spherical) = 0.87), while the opposite

conditions favored those that are oblong or contain tails (P(spherical) = 0.40)

(Figures 3I and S12).

Next, we excluded low-performance regions of the design space (associated with

failed or aspherical bioblocks) in these experiments, while freely exploring the ef-

fects of assembly parameters on bioblock size (Figures 3J and S13–S18). We built

a regressor (Tables S1 and S2) to predict their size as a function of nine different in-

puts, finding a high r2 value (0.897) and mean (45.4 mm) and median absolute errors

(32.8 mm) below 50 mm (Figure 3K). These errors were small relative to their size
Matter 6, 1–22, March 1, 2023 5



Figure 3. Controlled assembly of hydrogel bioblocks

(A) Overview of the droplet-based bioblock fabrication and corresponding data-driven models. Summary boxes display the number of unique

experiments, number of recorded observations, and number of input design parameters.

(B) Optical images of successfully formed or failed alginate bioblocks.

(C) Accuracy, ROC-AUC, and F1 scores for the data-driven classifier predicting bioblock formation.

(D) Predicted probability of bioblock formation given hypothetical changes in precursor viscosity, precursor concentration, applied air pressure, or

gelation bath surface tension.

(E) Predicted probability of bioblock formation given hypothetical changes in both precursor concentration and applied air pressure.

(F) Optical images depicting examples of alginate bioblocks with tails, oblong bioblocks, and spherical bioblocks.

(G) Accuracy, ROC-AUC, and F1 scores for the data-driven classifier predicting bioblock shapes.

(H) Predicted probability of a spherical bioblock given hypothetical changes in precursor viscosity, precursor concentration, applied air pressure, or

gelation bath surface tension.

(I) Predicted probability of a spherical bioblock given hypothetical changes in both bath surface tension and precursor viscosity.

(J) Optical images depicting small (D = 89.9 G 15.4 mm) and larger (D = 834.2 G 31.0 mm) alginate bioblocks.

(K) r2, mean absolute error, and median absolute error for the data-driven regressor predicting bioblock size.

(L) Predicted bioblock diameter given hypothetical changes in applied air pressure, air pressure to extrusion nozzle distance, extrusion nozzle diameter,

or bath crosslinker concentration.

(M) Predicted bioblock diameter given hypothetical changes in both nozzle diameter and air pressure-to-nozzle distance.

For all univariate design plots (D, H, L), gray lines represent the mean prediction for all conditions in the synthetic 23N dataset, and blue diamonds with

vertical error bars represent the mean predictions and bootstrapped 95% confidence intervals for the specific conditions being compared. For in-depth

experimental and computational results for bioblock assembly, see also Figures S1–S18.
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range (953 mm) and SD (218 mm), indicating that the model had extracted useful pre-

dictive patterns (Figures 3L and S14). Not surprisingly, there is a strongly negative

relationship between diameter and air pressure. Since high pressures are linked to

unstable or aspherical bioblocks (Figures 3E and 3H), the model identified other as-

sociations from the multidimensional design space that could also be leveraged for

size control (Figures 3L and S17). For example, increasing both nozzle diameter

(30 mm–150 mm) and pressure-to-nozzle distance (1 mm–30 mm) would yield signif-

icantly larger (>60%) alginate bioblocks compared with the opposite conditions

(Figures 3M and S18).
6 Matter 6, 1–22, March 1, 2023



Figure 4. Controlled consolidation of hydrogel bioblocks into dense granular matrices

(A) Overview of the processing of alginate bioblocks into dense granular matrices and corresponding data-driven models. Summary boxes display the

number of unique experiments, number of recorded observations, and number of input design parameters.

(B) Optical images depicting highly contracted bioblocks in high-Ca2+/low-Na+ suspending medium and highly swollen bioblocks in a low-Ca2+/high-

Na+ suspending medium.

(C) r2, mean absolute error, and median absolute error for the data-driven regressor predicting bioblock size over time in different media.

(D) Predicted diameter given hypothetical changes in fluid-phase Ca2+ and Na+ concentration, solid-phase alginate concentration, or crosslinker

concentration (Ca2+) in the initial gelling reservoir.

(E) Predicted diameter given hypothetical changes in Ca2+ and Na+ concentrations of the fluid phase.

(F) Optical images depicting jammed bioblocks at increasing volume fractions, with gradual removal of the fluid phase and notable compaction and

deformation of solid-phase bioblocks.

(G) r2, mean absolute error, and median absolute error for the data-driven regressor predicting the granular matrix’s approximate volume fraction.

(H) Predicted volume fraction given hypothetical changes in filtration time, membrane pore size, solid-phase alginate concentration, or total suspension

volume.

(I) Predicted volume fraction given hypothetical changes in membrane pore size and total suspension volume.

For all univariate design plots (D and H), gray lines represent the mean prediction for all conditions in the synthetic 23N dataset, and green diamonds

with vertical error bars represent the mean predictions and bootstrapped 95% confidence intervals for the specific conditions being compared. For in-

depth experimental and computational results for granular matrix preparation, see also Figures S19–S35.
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Controlled consolidation of hydrogel bioblocks into dense granular matrices

In the second phase of the study, we compacted individual alginate bioblocks into

dense granular matrices that exhibit viscoplasticity.7,8,11,67–69 First, because hydro-

gels can swell or de-swell based on environmental conditions,21,22 wemeasured bio-

block size as a function of swelling time under different media conditions (Figures

4A, 4B, and S19–S24). We built a regressor (Tables S1 and S2) to predict bioblock

size as a function of 13 different inputs from their initial droplet-based assembly

and subsequent incubation. The r2 was high (0.884) and the mean (53.4 mm) and me-

dian (35.2 mm) absolute error are low given the considerable range (972 mm) and SD

(225 mm) of the dataset (Figures 4C and S20). The alginate bioblocks did change over

time, and their size depended on the Ca2+ and sodium ion (Na+) concentrations in

the fluid phase (Figures 4D and S23). While the degree of swelling depended

strongly on the alginate concentration, there was a much smaller dependence on

initial crosslinker concentration. The bivariate map highlighted the divergent effect

of differing ionic profiles—bioblocks suspended in a low-Ca2+, high-Na+ environ-

ment are predicted to have over a 5-fold greater volume compared with those in

a high-Ca2+, low-Na+ environment (Figures 4E and S24). Since highly contracted

bioblocks will exhibit greater stiffness and friction than highly swollen particles, inter-

mediate structural changes should be carefully monitored throughout the bioblock
Matter 6, 1–22, March 1, 2023 7
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design process to enable accurate forecasting of the downstream matrix

properties.15,23

To obtain granular matrices, we needed to convert dilute suspensions of free-

floating bioblocks into highly compacted (i.e., ‘‘jammed’’) matrices, where neigh-

boring particles are in contact with one another1,2 (Figures 4F and S25–S28;

Tables S3 and S4). Because these soft bioblocks can deform, it is difficult to pre-

cisely measure the bioblock volume fraction within the dense granular matrices17,70

(Figure 4F). We therefore used a practical estimate of their volume fraction to

enable discrimination between different levels of compaction (Figure S29;

Tables S5 and S6). Ultimately, we used gravity- or pressure-driven filtration to re-

move interstitial fluid phase and jam the remaining solid-phase bioblocks. Before

jamming, bioblock volumes are recorded and the solid-phase fraction is approxi-

mated.71,72 We then recorded the fluid-phase volume lost during filtration, which

enabled on-the-fly estimation of their solid volume fraction. This heuristic allowed

us to compact free-floating bioblocks into dense matrices and compute approxima-

tions of the matrix packing state simultaneously (Figure 4A). The time-dependent

volume fraction curves are non-linear, with rapid fluid loss during the initial transi-

tion from dilute to jammed suspensions (Figure S30). We built a regressor

(Tables S1 and S2) to predict the volume fraction of granular bioblock matrices as

a function of eight different assembly and processing inputs. The r2 was 0.755

and mean (0.059) and median (0.05) absolute error are around 0.05, which demon-

strated that the time-dependent jamming process could be predicted reasonably

well (Figures 4G and S31–S35). Filtration time had the greatest impact on volume

fraction, while the other inputs served to manipulate the trajectory of the jamming

process (Figures 4H, S34, and S35). Increasing pore size or increasing pressure

accelerated fluid passage through the membrane and increased the predicted vol-

ume fraction. However, extrinsic parameters are not the only relevant features

(Figures S34 and S35). For example, large volumes of soft bioblocks would be at

lower volume fractions than smaller volumes of stiff bioblocks, all other things being

equal (Figure 4I).

Rheological behavior of granular matrices composed of hydrogel bioblocks

Next, we explored the rheological properties of granular matrices composed of

densely packed, hydrogel bioblocks. Specifically, we measured their shear moduli,

shear yielding, and shear-thinning behavior (Figure 5A). The ability to tailor these

critical properties is important for many biomedical applications.1,2 We first

measured storage (G0), loss (G00), and complex (G* = G0 + iG00) moduli via oscillatory

amplitude sweeps (Figure 5A; full data in Figures S36–S39). Each granular matrix ex-

hibited a linear elastic region in which G0 exceeded G00, indicative of a solid-like

response.15,23,24 However, by varying material inputs, we could generate markedly

different matrices with moduli spanning several orders of magnitude (Figures 5B and

S37). Beyond the linear elastic regime, each matrix exhibited a yielding transition

and subsequent viscous flow15,23,24 (Figure S38).

We built a multi-output regressor (Tables S1 and S2) to predict the complete visco-

elastic profile (G0, G00, G*), and when using oscillatory stress as a predictor, we

obtained r2 of 0.944, MAE of 136.98, and median AE of 18.49 (Figures 5C and

S40–S44). Given the complexity and the range of possible output values (from

�0.1 Pa to �11 kPa), we concluded the model effectively learned the non-linear vis-

coplastic responses (Figure S40). We find that alginate concentration, ion concentra-

tion, and volume fraction are key modulators of matrix stiffness (Figures 5D and S43).

Increasing the alginate and Ca2+ concentrations (or decreasing Na+ concentration)
8 Matter 6, 1–22, March 1, 2023



Figure 5. Rheological behavior of dense granular matrices composed of hydrogel bioblocks

(A) Overview of the granular matrix characterization approach and corresponding data-driven models. Summary boxes display the number of unique

experiments, number of recorded observations, and number of input design parameters.

(B) Representative curves of storage modulus versus oscillation stress.

(C) r2, mean absolute error, and median absolute error for the data-driven regressor predicting storage, loss, and complex moduli versus oscillation

stress.

(D) Predicted storage modulus given hypothetical changes in bioblock concentration, fluid-phase Ca2+ and Na+ concentrations, and estimated solid-

phase volume fraction.

(E) Predicted storage modulus given hypothetical changes in the Ca2+ and Na+ concentrations of the fluid phase.

(F) Representative curves of storage modulus versus oscillation strain.

(G) r2, mean absolute error, and median absolute error for the data-driven regressor predicting storage, loss, and complex moduli versus oscillation

strain.

(H) r2, mean absolute error, and median absolute error for the data-driven regressor predicting yield stress.

(I) Predicted yield stress given hypothetical changes in alginate concentration, fluid-phase Ca2+ and Na+ concentrations, and estimated solid-phase

volume fraction.

(J) r2, mean absolute error, and median absolute error for the data-driven regressor predicting yield strain.

(K) Predicted yield strain given hypothetical changes in alginate concentration, fluid-phase Ca2+ and Na+ concentrations, and estimated solid-phase

volume fraction.

(L) Representative curves of apparent viscosity versus rotational shear rate.

(M) r2, mean absolute error, and median absolute error for the data-driven regressor predicting apparent viscosity versus shear rate.

For all univariate design plots (D, I, K), gray lines represent the mean prediction for all conditions in the synthetic 23N dataset, and orange diamonds

with vertical error bars represent the mean predictions and bootstrapped 95% confidence intervals for the specific conditions being compared. For in-

depth experimental and computational results for rheological characterization, see also Figures S36–S66.
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produced bioblocks with higher stiffness, resulting in much stiffer granular matrices.

Not surprisingly, stiff granular matrices also arise when the bioblock volume fraction

is under further compaction. The combined effect of ion concentration is clear in

bivariate maps, where granular matrices composed of highly swollen bioblocks (in

high Na+, low Ca2+) are much softer than those formed in high Ca2+ and low Na+

(Figures 5E and S44). We repeated the model-building process (Tables S1 and S2)

using oscillatory strain as a predictor (instead of stress) and again found high
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evaluation scores with r2 = 0.913, MAE = 171.22, andmedian AE = 16.34 (Figures 5F,

5G, and S45–S47). Hence, their dynamic viscoplastic profile can be predicted quite

accurately given the upstream processing and structural history.

After modeling the full oscillatory response, we extracted shear yielding values to

better understand the yielding behavior of dense granular matrices (Figure S36).

We define the yielding point as the value at which G0 is 0.9 3 G0
o (where G0

o is the

plateau modulus).73,74 The yield stress spans well over 3 orders of magnitude for

different matrices, while the yield strain varies by less than 2 orders of magnitude

(Figure S49). We built a regressor (Tables S1 and S2) to predict the shear yield stress

(Figure 5A) and observed an r2 of 0.854, MAE of 10.75, and median AE of 2.02, indi-

cating accurate mapping of upstream material inputs to downstream yielding

(Figures 5H and S50). We observed similar trends as the storage modulus, with

greater alginate concentration, Ca2+ concentration, or volume fraction leading to

greater predicted yield stresses (Figures 5I and S51–S53). After building a regressor

for yield strain (Tables S1 and S2), we observed r2 of 0.658, MAE of 1.10, and median

AE of 0.57 (Figures 5J and S54), indicating that yield strain is more difficult to predict

than yield stress, potentially due to a less deterministic input-output map and a rela-

tively greater contribution of noise and batch effects to the recorded output values.

Several univariate yield strain patterns are also different from those observed for

yield stress or storage modulus (Figures 5K, 5I, and 5D). In this case, the volume frac-

tion is the most critical parameter, while alginate concentration and fluid-phase ions

had a negligible effect (Figures 5K, S55, and S56). Interestingly, bioblock size had a

minimal impact on yield stress or stiffness, but there is a sizable negative relationship

between bioblock size and predicted yield strain (Figures S56 and S57). These re-

sults reinforce how the relative effects of a parameter depend on the specific

input-output relationship being studied. We also encoded a binary variable tracking

the bioblock resuspension protocol (where 1 = single wash, 2 = multiple washes),

and though it is not critical for predicting stiffness or yield stress, it is useful for pre-

dicting yield strain (Figures S56 and S57). This highlighted the importance of moni-

toring intermediate steps when developing complex, hierarchical materials like

granular bioblock matrices. Even low-precision observations can help to explain

outcome variance in a data-driven way, which in turn can suggest future avenues

for troubleshooting and optimization.

Next, we characterized the shear-thinning profiles of these dense granular matrices

(Figures S58–S62). Each matrix displayed a pronounced decay in apparent viscosity

with increasing shear rate (Figures 5L and S37) and all extracted flow behavior

indices were <0.4 (Figure S36). We developed a regressor (Tables S1 and S2) to pre-

dict the shear-thinning response (indicated by the log of the viscosity) and observed

an r2 of 0.867, MAE of 511.59, andmedian AE of 26.07 (Figure 5N). While themedian

error is quite low, the mean error is roughly 20-fold higher, indicating that the error

distribution is skewed by the presence of outlier values (Figures S58 and S59). The

bioblock concentration and washing protocol are critical for determining viscosity,

with softer and more swollen matrices exhibiting a lower resistance to flow

(Figures S60–S62). Lower apparent viscosity is also predicted for matrices composed

of either larger bioblocks or lower bioblock volume fraction, suggesting that the

number density of bioblock ‘‘contacts’’ within these matrices is a key parameter

(similar to yield strain above). Last, we extrapolated the limiting stress from the

flow curves to obtain estimated shear yield stress values73,74 (Figures S63–S66).

We developed a data-driven model and found we could accurately predict yield

stresses from flow curves, and in general the bioblock concentration, size, and resus-

pension protocol emerged as key parameters.
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Injectability and extrudability of dense granular matrices composed of

hydrogel bioblocks

Finally, we explored the extrudability and injectability of dense granular matrices

composed of alginate bioblocks. The ability to optimize their performance is essen-

tial for both bioprinting and injectable therapies.7,12,75 Since performance depends

on both material attributes and functional context, the precise combination of

intrinsic material parameters and extrinsic (extrusion/injection) parameters may yield

a complex design space with low- and high-performing regions. To elucidate this

further, we attempted to inject a range of granular matrices under different extrusion

conditions and categorized the outcomes as either ‘‘success’’ (e.g., smooth and

controlled delivery of material) or ‘‘failure’’ (e.g., material clogging, uncontrollable

delivery) (Figures 6A, 6B, and S67–S74). More than one-third of these trials resulted

in failure, confirming our intuition that certain regions of the performance space are

incompatible with injectability (Figure 6B). We developed a classifier (Tables S1 and

S2) to predict extrusion outcomes as a function of intrinsic material parameters and

extrinsic extrusion parameters (Figures S74–S79). After applying the modeling pipe-

line, we observed high accuracy (0.885), ROC-AUC (0.955), and F1 scores (0.881),

indicating that the patterns from the multidimensional performance space were

effectively learned (Figure 6C). The relative mechanics of the granular matrix phases

(solid-phase bioblock stiffness, fluid-phase viscosity) emerged as key modulators of

extrudability75 (Figures 6D, S77, and S78). While densely jammed matrices are less

injectable, the packing state had a smaller effect than the solid and fluid-phase me-

chanics. As highlighted in the 2D map, stiffer bioblocks suspended in a low-viscosity

fluid tend to clog immediately (fail), while softer bioblocks suspended in higher vis-

cosity fluids exhibit smooth and reliable injection (success) (Figures 6E and S79). As

expected, extrusion parameters are also important determinants of injectability (Fig-

ure 6D). Small bioblock-to-nozzle ratios favored success, while matrix injectability

diminished when the bioblock and nozzle diameters approached one another. The

use of longer nozzles also markedly decreases success. Interestingly, the model

did not predict much difference between manual and non-manual injection, though

we perceived that the latter was more reliable during our trials (Figure 6D). By

learning patterns across all dimensions simultaneously, ML can help to challenge

and/or refine human analysis of multifaceted processes.

To complete this effort, we quantified the extrusion profiles of different granular

matrices (Figures 6F and S80). The prior qualitative model showed that the relative

solid- and fluid-phase mechanics are critical (Figure 6E). However, high-viscosity

fluids pose handling challenges, so here we focused on regions of the design space

that did not require viscous fluid for injection. Specifically, we assessed granular

matrices with different bioblock composition, volume fraction, and fluid-phase

ions, along with an array of syringe volumes, nozzle diameters, and extrusion speeds

(Figures S83–S85). Successful injections exhibited smooth force-versus-displace-

ment curves, while failed (unstable) injections had erratic jumps or gradual increases

in applied force due to matrix clogging within the nozzle (Figures 6F, 6G, and S81).

Such instabilities are undesirable, as they can result in defects during bioprinting or

potential patient harm in injectable therapeutics.7,12,75 Of the 108 trials performed,

20 resulted in unstable injection curves (including all formulations predicted to be

‘‘low-performance’’). We devised a classifier (Tables S1 and S2) to predict extrusion

stability as a function of 12 different material and extrusion parameters (Figures 6F,

6G, and S86–S90). After executing the computational pipeline, we find that our data-

driven model achieved very high accuracy (0.982), ROC-AUC (0.967), and F1 score

(0.981) (Figure 6H) This represents a sizable improvement compared with the previ-

ous extrusion model (Figure 6), highlighting that the incorporation of quantitative
Matter 6, 1–22, March 1, 2023 11



Figure 6. Injectability and extrudability of dense granular matrices composed of hydrogel bioblocks

(A) Overview of the qualitative approach for assessing granular matrix injectability and corresponding data-driven model. Summary boxes display the

number of unique experiments, number of recorded observations, and number of input design parameters.

(B) Macroscopic and microscopic optical images of failed injection (immediate clogging and delivery of watery, un-jammed bioblocks) and successful

injection (controlled delivery of dense granular matrices).

(C) Accuracy, ROC-AUC, and F1 scores for the data-driven classifier qualitatively predicting the injection performance of these granular matrices.

(D) Predicted probability of successful granular matrix extrusion given hypothetical changes in the relative solid-phase bioblock stiffness, relative fluid-

phase viscosity, relative granular matrix jamming status, ratio of bioblock diameter-to-nozzle diameter, nozzle length, and injection method

(pneumatic/mechanical or manual). Gray lines represent the mean prediction for all conditions in the synthetic 23N dataset, and purple diamonds with

vertical error bars represent the mean predictions and bootstrapped 95% confidence intervals for the specific conditions being compared.

(E) Predicted probability of successful granular matrix extrusion given hypothetical changes in the relative solid-phase bioblock stiffness and relative

fluid-phase viscosity.

(F) Overview of the quantitative approach for granular matrix injectability assessment and corresponding data-driven models. Summary boxes display

the number of unique experiments, the number of recorded observations, and the number of design features used to predict the outcome.

(G) Representative plots of extrusion stability (in green) and instability (in red).

(H) Accuracy, ROC-AUC, and F1 scores for the data-driven classifier predicting granular bioblock matrix injection stability.

(I) Predicted probability of stable extrusion given hypothetical changes in the granular bioblock matrix complex modulus and fluid-phase Ca2+

concentration.

(J) Representative plots of differing extrusion force curves.

(K) r2, mean absolute error, and median absolute error for the data-driven regressor predicting the complete granular bioblock matrix extrusion force

profile.

(L) Predicted extrusion force given hypothetical changes in the extrusion nozzle diameter and the displacement of the syringe plunger.

For in-depth experimental and computational results for extrudability assessment, see also Figures S67–S95.
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process, structure, and property data enables better estimates of performance in

disparate functional contexts. We observed that granular matrix injection stability

depends on multiple inputs simultaneously (Figures S88 and S89). From a material

standpoint, a greater complex modulus magnitude led to a sizable decrease in

the probability of stable extrusion. A similar trend is observed with yield stress, high-

lighting the strong link between rheology and performance. However, rheology

alone does not always determine injectability. For example, stiff bioblocks at low

volume fraction displayed a storage modulus very similar to soft bioblocks at high

volume fraction; however, the former matrix is non-injectable while the latter can

be injected reliably (Figure S82). This finding is reflected in the design map, where

matrices composed of contracted bioblocks (in higher Ca2+) had a lower probability

of stability than those composed of swollen bioblocks (in lower Ca2+) even if the stor-

age moduli are nearly identical (Figures 6I and S90). Hence, the entire processing

and structural histories are required to accurately predict granular matrix injectability

(Figure S89). Predictably, smaller extrusion diameters are strongly associated with

lower extrusion stability. We also found that higher rates of injection favored stabil-

ity, while larger syringe barrel diameters favored instability (Figures S89 and S90).

Finally, we surprisingly observed that nozzle length did not havemuch of a predicted

effect on stability.

After classifying injection stability, we built a regressor to predict the complete time-

varying force profile for each extrusion (Figures 6F, 6J, and S91–S95). The mean in-

jection force was 4.2 G 4.5 N but the maximum force was 76.1 N (due to material

clogging events) (Figure S91). Although the unstable trials contributed significant

variability, most granular matrices could be extruded with limited application of

force. This ease of delivery is conducive to safe manual injection in the clinic and

controlled pneumatic or mechanical extrusion during bioprinting.76 We built a

data-driven model (Tables S1 and S2) and interestingly found that the r2 was

�0.117, but the mean and median absolute error were 1.292 and 0.617 (Figure

6K). This highlights the importance of amulti-metric evaluation approach (Figure 2A).

The r2 and MAE were skewed by poor performance on outlier test samples, but the

low median AE indicates that many force profiles could actually be predicted quite

accurately. Unsurprisingly, increasing the magnitude of the material’s complex

modulus substantially increased the predicted force, whereas the yield stress had

a negligible effect (Figures S93 and S94). The upstream bioblock processing (e.g.,

manipulating fluid-phase ions) also played a role, with granular matrices composed

of contracted bioblocks (in higher Ca2+) having greater predicted injection

forces than granular matrices composed of swollen bioblocks (in lower Ca2+)

(Figures S94 and S95). Increased nozzle diameter decreased the force while

increased plunger displacement increased the force, and there was a strong interac-

tion between the variables (Figure 6L). For large-diameter nozzles, similar forces

were required at both the start (5-mm displacement) and end (50-mm displacement)

of injections. However, for smaller diameters, the predicted force was much greater

at the end of an injection, suggesting gradual nozzle clogging or phase separation of

the matrix, which drastically increased the force required to maintain extrusion.

Other parameters were not as critical, but they still interacted to modulate extrusion

force (Figures S93–S95).
DISCUSSION

Granular matrices composed of hydrogel building blocks are promising, yet com-

plex materials due to the multidimensional parameter spaces and multi-scale phe-

nomena associated with each step in their development pipeline. Through a
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combination of data-driven modeling and experiment, we explored the scalable for-

mation of hydrogel bioblocks, their compaction into dense granular matrices, their

emergent non-linear rheology, and their delivery through fine nozzles. Our bottom-

up empirical progression was supported by a flexible pipeline that enables

automated generation of predictive input-output frameworks for a wide range of

datatypes and ML tasks. This data-driven approach allows one to assess the predict-

ability of each design stage, identify critical parameters, perform predictive analytics

or combinatorial optimization, and extract high-level data-driven insights. We used

these data-driven material maps to optimize the design and assembly of both

bioblocks and granular matrices to obtain predictable rheological behavior and

extrudability. With refinement, such insights could support the rapid design and

fabrication of granular matrices with controlled structure, properties, and perfor-

mance for applications ranging from drug delivery to tissue engineering.77–80

We showed that data-driven approaches could be effectively applied to a suite of

complex problems across the soft granular matter life cycle that remain difficult to

simulate or analyze.19,25,31,33 Key limitations of data-driven modeling are the reli-

ance on data/problem representation and the inability to differentiate between

correlation and causation.27,28,81 We find that the data-driven models consistently

uncovered reliable design insights, many of which could be linked to patterns

from other empirical reports focused on a single phase of the material pipeline.82–89

Future efforts could use hybrid frameworks with physical equations to more explicitly

integrate mechanistic understanding into the modeling process.37,90–92 Eventually,

it may be feasible to directly build inverted models or build fully connected forward

models that can be combined with powerful algorithms for optimization.27,29

Further, closed-loop active learning could be used to interactively improve predic-

tive capacity and efficiently sample within each experimental space, while transfer

learning could be applied to transfer knowledge from related domains to small

empirical datasets.32,93 Finally, efforts to map the supervised ML space, develop

problem-specific recommendations, and automate modeling could facilitate more

rigorous adoption of ML by the materials science community.33,94

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to

the lead contact, Connor Verheyen (connorv@mit.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All original data (baseline data, processed data,model predictionmatrices) andoriginal

code (custom machine learning pipelines and complete analytical workbooks for each

data-driven model) have been deposited in a public GitHub repository: https://github.

com/connor-verheyen/DataDrivenGranularHydrogels and permanently archived in a

public Zenodo repository: https://doi.org/10.5281/zenodo.7506819.

Hydrogel bioblocks

Alginate precursor stock solutions were prepared by mixing dry sodium alginate

(Sigma-Aldrich A2033-MV or A1112-LV) with deionized water in a FlackTek Speed-

Mixer to obtain 0.25%, 0.50%, 1.00%, or 2.00% solutions by weight. After complete

dissolution of the alginate, all precursor solutions were passed through syringe filters
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and stored at 4�C. Calcium chloride stock solutions were prepared by dissolving cal-

cium chloride dihydrate (Sigma-Aldrich) in deionized water to obtain 500-mM solu-

tions. To produce a batch of bioblocks, alginate precursor solutions were first loaded

into 25-mL glass syringes (Hamilton 1000 series). The alginate syringe was loaded

into a syringe pump (Harvard Apparatus PHD ULTRA), which was placed on a surface

with adjustable height to control the drop distance (30–280 mm). An extrusion

nozzle was then attached to the alginate syringe (EFD Nordson, 30–150 mm diam-

eter, 0–45-degree angle). A gelation bath was prepared by diluting the CaCl2 stock

solution to 100 or 10 mM, with or without the addition of 5% ethanol to modify bath

surface tension. The gelation batch was placed underneath the alginate syringe

nozzle to collect the falling microdroplets. A ring stand and clamp was used to

position an air pressure cartridge and nozzle above the alginate syringe nozzle

(0.8–30 mm above, at a 70–90� angle), and the air pressure cartridge was attached

to a pressure box (Nordson EFD Ultimus V) to maintain a desired air pressure

(1–40 PSI). Once the setup was completed, an assembly run was started by first initi-

ating the air pressure and then initiating an infusion on the syringe pump at a pro-

grammed volumetric flow rate (25–200 mL/min). Nanoliter to microliter-scale drop-

lets were extruded from the alginate syringe into the airstream, which induced the

droplets to detach and fall into the downstream gelation bath. Alginate bioblocks

formed as the precursor droplets were crosslinked by calcium ions in the bath.

Bioblocks were incubated in the gelation bath for at least 1 h to allow for sufficient

crosslinking before any further characterization or manipulation. After crosslinking,

bioblock batches were removed from the gelation bath, transferred into storage

containers, and resuspended with 2 to 3 mM CaCl2. Upon completion of the empir-

ical exploratory phase, the various qualitative and quantitative attributes from each

production trial were retrospectively aggregated into a machine-readable spread-

sheet for data-driven modeling.

Representative samples of crosslinked bioblocks from each production batch were

transferred to Petri dishes and a phase contrast microscope (Leica) was used to

optically image the swollen bioblocks (34 to 310 objective). At least four optical

images were taken per batch, each in different regions of the dish to effectively

survey the bioblock population (on average, images contained �10–30 unique par-

ticles). The optical images were then analyzed using ImageJ software. Bioblock for-

mation was recorded as a binary categorical variable, where stable and well-

defined 3D particles were marked as a successful formation event and unstable

and amorphous particles were marked as a failed formation event. Bioblock shape

was recorded as a multi-class categorical variable, where the stable and well-

defined particles selected in the previous step were further sub-classified as

sphere, oblong, or tail. For both formation and shape, the ImageJ multi-point

tool was used to mark the bioblocks in the field of view, and then the ‘‘measure’’

function was used to tally the total number of marks. For bioblock size, the pixel-

to-micron conversion for the given objective was used to map the image scale to

the actual scale. Then the ImageJ line and ellipse selection functions were used to

demarcate the bioblocks in the field of view, and the ‘‘measure’’ function was used

to extract the 2D cross-sectional dimensions of the alginate bioblocks. The bio-

block formation, shape, and initial size outcomes were paired with the correspond-

ing assembly parameters to enable data-driven mapping of upstream processing

inputs to downstream structural outputs.

Dense granular matrices

Batches of crosslinked alginate bioblocks were filtered to remove outlier particles

and then selected bioblock populations were washed and resuspended in aqueous
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media with different ion concentration. The bioblocks were imaged over time in or-

der to monitor the dynamic response of a bioblock to the surrounding fluid environ-

ment. As before, representative samples of the bioblocks were transferred to Petri

dishes and optically imaged via phase contrast microscope (Leica). Next, the ImageJ

size analysis workflow was repeated to obtain updated measurements of the

bioblock dimensions (tracking the bioblock swelling or shrinking over time). The

long-term bioblock size stability data and corresponding production and processing

attributes were then aggregated into a machine-readable spreadsheet for data-

driven modeling. Once the bioblocks had been resuspended in their desired fluid

phase, dilute bioblock suspensions were allowed to settle in graduated cylinders

for 1 h and the volume of settled bioblocks and the total volume in the cylinder

were recorded. The suspension was then transferred to a custom jamming tube

with an integrated semi-permeable membrane to enable passage of the continuous

fluid phase while restricting passage of the solid-phase bioblocks. The volume of the

fluid phase lost through the membrane was recorded at select timepoints

throughout the jamming process. A pressure line could be attached to the cartridge

to apply pressure, or gravity alone could be used to drive filtration. Over time, the

gradual consolidation of the solid phase behind the membrane produced a dense

suspension of jammed bioblocks—a granular bioblock matrix. The solid-phase vol-

ume fraction of the granular bioblock matrix was approximated by first assuming a

settled volume fraction (�0.60) and then updating the estimate on-the-fly as the fluid

phase was lost. The jamming process was halted once a granular bioblock matrix

with the desired estimated volume fraction was obtained, and then the granular bio-

block matrix was transferred to a container for longer-term storage in the given

jammed state. For the preliminary qualitative injectability testing, capillary wicking

was instead used to jam the bioblocks into granular bioblock matrices. In this

case, the supernatant of settled bioblock suspensions was first aspirated, and then

a wicking material (e.g., paper towel) was applied to the surface of the suspension

to further withdraw the interstitial fluid via capillary action. The wicking process

could be halted once a given qualitative jamming state had been reached. The

volume fraction estimates were paired with the various qualitative and quantitative

attributes from the jamming process and compiled into a machine-readable spread-

sheet to enable data-driven mapping of upstream processing inputs to downstream

structural outputs.

Rheological characterization

All rheological measurements were performed using a Haake RheoStress 6000 rheom-

eter with 25-mm-diameter parallel plate geometry. To prevent wall slip, low-grit sand

paper was glued to each parallel plate. Granular bioblock matrices were transferred

onto the parallel plates via spatula, and material volume was trimmed or augmented

to ensure an adequate testing fit. Hydrated paper towels were placed circumferentially

around the testing site tomaintain local humidity to reduce evaporation of the granular

bioblock matrix. The tests performed on a given material could include oscillatory

amplitude sweeps (stress, strain, frequency) as well as rotational flow sweeps (forward,

reverse), and tests were performed between 22 and 25�C. Oscillatory stress and strain

sweeps were conducted at a fixed frequency of 1 Hz, while oscillatory frequency

sweeps were performed at a fixed strain of 1%. The plateau moduli (storage, loss,

and complex modulus) were obtained by performing a linear regression on the data-

points in the linear viscoelastic regime of the oscillatory curves and extracting the inter-

cepts. The oscillatory yield points (yield stress, yield strain) were obtained by extracting

the amplitudes (stress, strain) at the points on the oscillatory curves where the storage

moduli had decreased by at least 30%, indicating substantial softening and a clear de-

parture from linear viscoelasticity. The rotational yield points were obtained by linearly
16 Matter 6, 1–22, March 1, 2023
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extrapolating the stress versus shear-rate curves and extracting the intercepts. The pro-

duction, processing, and structural information for each granular bioblock matrix

formulation was paired with the corresponding rheological outcomes in a machine-

readable spreadsheet to enable data-driven mapping of upstream processing and

structural inputs to downstream property outputs.

Qualitative assessment of granular matrix injectability

Dense granular matrices were manually loaded into standard syringes (BD Luer-Lok,

3–10 mL volume) or dispensing cartridges (Nordson EFD Optimum, 3–10 mL vol-

ume), using a spatula to transfer the material while periodically tapping the syringe

to pack the material and decrease the presence of air gaps. After the material was

transferred, an injection attempt was performed via manual, pneumatic, or mechan-

ical force. For themanual approach, the syringe plungers weremanually advanced in

the syringe barrels in order to deliver the granular matrix. For the pneumatic

approach, the cartridges were attached to pressure lines and a programmed pres-

sure was applied to deliver the granular matrix. For the mechanical approach, the sy-

ringes were loaded into syringe pumps and a motor was used to advance the syringe

plunger to deliver the granular matrix. The extrusion attempts were performedwith a

wide variety of potential syringe attachments (with or without a nozzle, tapered or

straight, using a range of nozzle diameters, etc.) (Nordson EFD General Purpose

and SmoothFlow, 0.51 mm–1.54 mm inner diameter). The extrusion outcomes

were recorded in a categorical fashion: trials with stable, reliable, and controllable

delivery of material through the nozzle would be marked ‘‘success,’’ while trials

with immediate or delayed clogging, uncontrollable extrusion, or other instabilities

would bemarked ‘‘failure.’’ The qualitative and quantitative granular bioblock matrix

attributes were paired with categorical extrusion outcomes in a machine-readable

spreadsheet to enable data-driven mapping of upstream processing and structural

inputs to downstream performance outputs.

Quantitative assessment of granular matrix injectability

Dense granular matrices were manually loaded into standard syringes (BD Luer-Lok,

5 or 10 mL volume). After attaching the syringe barrel, the loaded syringes were

placed into a customized testing rig within the testing workspace of an Instron uni-

versal testing system. The syringes were oriented vertically (with the nozzle facing

down) and the Instron test arm was lowered until it contacted the plunger face.

The Instron arm was then used to advance the syringe plunger at a pre-programmed

(constant) displacement rate, thereby delivering the granular bioblock matrix

through the nozzle. As the extrusion progressed, the machine recorded the force

required to maintain the programmed displacement rate of the plunger. Before

testing the granular bioblock matrices, control extrusions were performed with air

and water to define the force profile and variability of the syringe itself. After comple-

tion, the force curves were manually inspected to identify injection instability.

Smooth and steady injection curves were marked ‘‘stable,’’ while curves with erratic

changes in force or increasing force over time were marked ‘‘unstable.’’ Given the

high frequency of data recording, the force curves were down-sampled prior to

modeling to reduce training times. The quantitative granular bioblock matrix attri-

butes were paired with the quantitative and qualitative extrusion outcomes in a ma-

chine-readable spreadsheet to enable data-driven mapping of upstream process,

structure, and property inputs to downstream performance outputs.

Data-driven modeling workflow

The machine-readable spreadsheets compiled after each empirical data collection

phase were read in and processed. For each unique dataset, basic label encoding,
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data transformation, and feature engineering steps were performed to obtain a

curated set of inputs and outputs for the corresponding supervised ML problem

(files were stored in xlsx or csv format). RF and GB were both used for binary classi-

fication, multi-class classification, cross-sectional regression, and panel regression

tasks (although only the RF supported multi-output regression). A subset of hyper-

parameters for each algorithm was selected and the exhaustive combination of hy-

perparameter configurations was assessed via automated grid search. A nested and

grouped k-fold CV scheme was used to evaluate the generalizability of the auto-

mated model configuration and selection protocol in an unbiased way. The outer

folds split data into train and test sets, and the inner folds further split the outer train

set into inner train and test sets. Model configurations were fit on the inner train

folds, the best-performing model configurations were selected based on their inner

test fold scores, and then the best-performers were re-fit on the outer train fold and

evaluated on unseen data in the outer test fold. Each experimental trial was assigned

a unique experimental ID and the grouped data-splitting protocol ensured that data

from the same trial could not be present in both train and test sets at the same time

to account for batch effects, repeated measures, and other sources of systematic er-

ror that would break the independence assumption. The predictive capacity of the

fitted models was scored using multiple evaluation metrics (accuracy, ROC-AUC),

and F1 score for classification problems; r2, MAE, and median absolute error for

regression problems). The mean, SD, and median values across all outer (holdout)

folds were computed and recorded. Then, a standard k-fold CV was applied in order

to execute the automated model configuration and selection protocol that was vali-

dated in the previous step. The optimal configurations of the RF and GB algorithm

were then fit to the entire dataset in order to obtain the final trained model. Then,

a customized workflow was applied to extract human-readable design insights of

the complex n-dimensional structure learned by the data-driven model. A simplified

and subsampled synthetic dataset was generated by first identifying representative

upper and lower levels for each input and then computing the Cartesian product to

artificially obtain full coverage of potential input combinations. This simplified

n-dimensional matrix was then fed into the trained models to generate a new set

of predictions based on the patterns the model had learned from the empirical

data. Then, 1D and 2D feature-target plots were generated to capture the general

univariate and bivariate associations between inputs and outputs in the data.

Further, a permutation feature importance protocol was applied to estimate the

importance of each design input to the trained model’s overall predictive capacity.

All modeling work was conducted in Python and all code and results are stored in

IPython notebooks in the open-access Google Colaboratory virtual environment. Li-

braries used for data preparation, modeling, analysis, and visualization include sci-

kit-learn, pandas, numpy, scipy, matplotib, and seaborn.

Note, we leveraged supervised ML to build data-driven models directly from our

empirical material datasets. The use of tree-based ensembles enabled good perfor-

mance across a range of supervised learning problems (binary, multi-class classifica-

tion; cross-sectional, panel, multi-output regression) and datasets (diverse data-

types and distributions), but future implementations could explore the use of

specific algorithms (e.g., simpler linear methods or more complex neural networks)

based on problem attributes. The grouped and nested CV protocol was designed to

rigorously performmodel tuning duringmodel evaluation, but certain regimes of the

dataset may still be susceptible to overfitting, underfitting, and optimistic evalua-

tion. The multi-metric performance estimates provided useful feedback about the

heterogeneous predictability of any given experimental process. The simplified

1D and 2Dmaps allowed for facile interpretation of the design space, with the caveat
18 Matter 6, 1–22, March 1, 2023
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that the lower resolution may obscure more complex trends. Future implementa-

tions could also explore dimensionality reduction techniques for visualization of

the learned data structure. Some limitations and assumptions of our overall

approach include the following: data size and sampling, data independence, data

preparation, algorithm selection, metric selection, overfitting, and correlation versus

causation. First, the datasets were relatively small (hundreds to thousands of points)

and tended to display uneven sampling of the entire available input-output space.

Such datasets can lead to overfitting as well as unreliable predictions in the sparser

regions of the input and output distributions. Second, ML algorithms assume that all

data are independent, which is not the case for datapoints derived from the same

experiment. We used unique experimental identifiers to guard against this issue,

but similarities across trials could still produce optimistic assessments. Third, the

experimental results were recorded in a range of formats and required both tech-

nical expertise and experimental familiarity to properly encode into machine-read-

able representations. Alternative data preparation choices by a human user could

produce differing representations, which could lead to differing data-driven models

and insights. Fourth, the choice of base algorithms can also impact modeling suc-

cess. Here we chose to work with tree-based ensemble models, but alternative op-

tions ranging from much simpler linear methods to much more flexible deep neural

networks may have been appropriate. Fifth, in a similar vein, the user’s choice of an

evaluation metric can lead to exacerbation or obfuscation of certain types of errors.

For example, accuracy works well for balanced data while F1 score may be more

appropriate for imbalanced data, and MAE will more harshly penalize outliers than

median AE. Sixth, overfitting is always a challenge for any ML problem. While we

used several methods to reduce the propensity to overfit, the flexibility of the

models and the size and distribution of the datasets could still lead to overfitting.

Finally, ML algorithms identify correlations in the data but they cannot perform

causal reasoning. As such, one must be mindful when interpreting the data-driven

patterns extracted from trained models. Here, technical expertise and experience

are useful for critically appraising the model-derived insights.
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